Даны вершины треугольника: А(1;-3;4), В(2;-2;5), C(3;1;3).
Находим векторы и их модули.
АВ = (1; 1; 1), |AB| = √(1² + 1² + 1²) = √3.
BC = (1; 3; -2), |AB| = √(1² + 3² + (-2)²) = √14.
АC = (2; 4; -1), |AB| = √(2² + 4² + (-1)²) = √21.
Косинусы углов находим по формуле:
cos A = (b² + c² - a²)/(2bc).
Вот результаты расчёта:
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
3,741657387 4,582575695 1,732050808 5,028141945 10,05628389 3,082207001
14 21 3
1,286484558 0,44556625 3,296091137 1,889365914 9,5 3,082207001
cos A = 0,629941 cos B = -0,308607 cos С = 0,933139
Аrad = 0,889319 Brad = 1,884524 Сrad = 0,367749
Аgr = 50,954246 Bgr = 107,975284 Сgr = 21,07047.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27