3) площадь ромба равна половине произведения его диаганалей S=(10x12):2=60 диаганали ромба пересекаются под прямым углом и делят друг друга пополам Периметр сумма длин его сторон,длина сторон одинакова чтобы найти длину стороны нужно рассмотреть один образовавшийся треугольник при пересечении диаганалей,так как углы при точке пересечения диаганалей 90° то все образававшиеся треугольники прямые,а стороны ромба являются гипотенузами этиз тр-ков, а катеты равны 10:2=5cм и 12:2=6см такак диоганали делят друг друга пополам квадрат стороныромба=5 в квадрате +6 в квадрате =25+36=61 сторона ромба равна корень квадратный из 61(теорема пифагора) P=4 умножить на кореньиз 61
Равнобедренный треугольник, основание AC=14.
BH - высота к основанию, является также биссектрисой и медианой.
AH=AC/2 =7 (H - середина AC)
BH =√(AC^2 -AH^2) =24 (теорема Пифагора)
S(ABC) =AC*BH/2 =14*24/2 =168
Центр вписанной окружности (I) - точка пересечения биссектрис.
BI/IH =AB/AH =25/7 (теорема о биссектрисе)
IH =7/32 BH =21/4 =5,25
(IH - расстояние от центра до стороны, то есть радиус)
Центр описанной окружности (O) - точка пересечения серединных перпендикуляров.
M - середина AB, BM=25/2
△OBM~△ABH (по двум углам)
OB/AB =BM/BH
OB =25*25/2*24 =625/48 ~13,02