Из заданного соотношения длин сторон треугольника АВС имеем:
АВ = 1, АС = (3/2)АВ, ВС = (4/3)АВ.
Приводим к общему знаменателю и представляем длины сторон подобного треугольника в целом виде: А1В1 = 6, А1С1 = 9, В1С1 = 8.
Находим углы этого (они же и у заданного) треугольника по теореме косинусов : cosα = (b²+c²−a²)/2bc.
Подставив данные длин сторон треугольника А1В1С1, находим:
cos A = 0,490741,
cos B = 0,1979167,
cos C = 0,756944.
Соответственно углы равны:
A = 1,057857 радиан или 60,61072 градусов,
B = 1,371564 78,584842,
C = 0,712172 40,804438.
Отсюда находим угол Q1D1B1 по сумме углов смежного треугольника: ∠Q1D1B1 = (1/2)∠А + ∠С = 71,109798 градуса.
Теперь переходим к длинам треугольника Q1D1B1.
Длина B1D1 по свойству биссектрисы р = ((ас)/(b + c)) равна:
B1D1 = p = (8*6)/(9 + 6) = 48/15 = 16/5 = 3,2.
Отрезок С1D1 = q = 8 - 3,2 = 4,8.
Находим длину биссектрисы А1D1:
A1D1 = √(bc - pq) = √(9*6 - 3,2*4,8) = √38,64 ≈ 6,216108.
Биссектриса А1D1 делится точкой пересечения с биссектрисой В1Е1 в отношении (b + c)/a. Отсюда находим длину Q1D1.
Q1D1 = A1D1*(a/(a + b +c)) = 6,216108*(8/23) = 2,162125.
Теперь можно определить площадь подобного треугольника Q1D1B1 по двум сторонам и углу между ними.
S(Q1B1D1) = (1/2)*2,162125*3,2*sin71,109798° = 3,273079.
Находим коэффициент"к" пропорциональности треугольников QBD и Q1B1D1:
к =√(S(QBD)/S(Q1B1D1)) = √(1/3,273079) = 0,552741.
По этому же коэффициенту находим длины сторон треугольника АВС.
Площадь АВС = 7,1875 А1В1 = В1С1 = А1С1 = Р = 12,713046
AB =3,316447
BC =4,421929
AC =4,974670/
Площадь АВС находим по формуле Герона.
Р = 12,713046, р = 6,356523.
S(АВС) = 7,1875 кв.ед.
Проверяем соотношение длин сторон:
1 1,3333 1,5
1 4/3 3/2. Соответствует заданному.
ответ: площадь АВС = 7,1875 кв.ед.
а) 56 кв. см;
б) ... .
Объяснение:
а) Дано:
АВСD - р/б трапеция;
АВ=CD=5 см (боковые стороны);
AD и BC - основания ABCD;
АВ=17 см;
ВС=11 см;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) Рассмотрим прямоугольник (т. к. ВМ и CN - высоты АВСD) МВСN:
ВC=MN=11 см (как противоположные стороны параллелограмма) => АМ=DN=(AD-MN):2= (17 см - 11 см) : 2 = 6 см : 2 = 3 см.2) Рассмотрим прямоугольный треугольник (т. к. ВМ - высота) АВМ:
По теореме Пифагора: высота ВМ^2=АВ^2-АМ^2=5^2-3^2=25-9=16 => ВМ = корень из 16 = 4 см.3) Теперь можем найти площадь трапеции ABCD:
S (ABCD)= 1/2•(AD+BC)•BM= 1/2 • (17 см + 11 см) • 4 см = 1/2 • 28 см • 4 см = 14 см • 4 см = 56 кв. см.ответ: 56 кв. см.
б) Дано:
АВСD - р/б трапеция;
АВ=CD (боковые стороны);
AD и BC - основания ABCD;
АВ=8 см;
ВС=2 см;
Угол АDC=60°;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) ... .
Приложения:
1. "Зимнее утро"
2. Карши
3. Сырдарья и Амударья
4. Нукус, Каракаппакстан
5. "Навои"
6. "Знания". "Поединок"
7. Иванова.
Приложение в предложении дополняют существительное и придаёт ему поясняющий смысл. Например: (в стихотворении каком? -"Зимнее утро".
В предложении приложение является определением. Приложение выполняет
роль пояснения существительного.
Морфологический разбор - наизусть.
Наизусть - наречие
Выучил ( как?) наизусть
Признак действия - неизменяемое
В предложении является обстоятельством