Внутри треугольника АВС взята точка D такая, что угол ABD = угол ACD = 45°. Докажите, что отрезки AD и BC перпендикулярны и равны, если угол ВАС равен 45°
* * *
Продлим ВD до пересечения с АС в т.Н, а отрезок СD - до пересечения с АВ в т.К и проведем АМ через т.D.
∠АСD=45° по условию, Если ∠ВАС=45°, то ∠АКС=90° и ∆ АСК – равнобедренный прямоугольный. АК=СК.
В ∆ АВН два угла при АВ равны 45°⇒∠ВНА=90° и ∆ АВН - равнобедренный прямоугольный, Тогда точка D - пересечение высот СК и ВН треугольника АВС. Отрезок АМ, содержащий АD, проходит через точку пересечения высот, следовательно, является высотой и перпендикулярен ВС. Отсюда АD⊥ВС. Доказано.
Прямоугольные ⊿ АКD и ⊿ CMD подобны по равному углу при вершине D ( вертикальные) ⇒ ∠КАD=∠MCD.
Рассмотрим ⊿ АКD и ⊿ ВКС. Из ⊿ АКС их катеты АК=СК. Острые ∠КАD и ∠КСВ равны (из доказанного выше). Следовательно, ⊿ АКD=⊿ ВКС по катету и острому углу. Отсюда следует равенство гипотенуз этих треугольников. АD=ВС, ч.т.д.
Диагонали прямоугольника равны и точкой пересечения делятся пополам, поэтому тр-к, образованный половинками диагоналей и стороной - равнобедренный, поэтому и другой угол, образованный диагональю с той же стороной равен 34гр.В этом тр-ке остаётся угол между диагоналями 180 - 2 * 34 = 112гр. Другой угол 180-112 = 68гр.