Рассмотрим один из равных треугольников, разделённых высотой.
один катет = 48 (это высота)
второй катет обозначим 7x
гипотенузу обозначим 25x (это сторона большого треугольника)
уравнение: 625x² = 2304 + 49x² - по теореме Пифагора.
Решаем:
576x² = 2304
x² = 4
x = 2
отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 2*25 = 50
катет маленького треугольника, он же 1/2 основания большого треугольника
3*7 = 21, а всё основание равно 21*2 = 42
Искомая площадь треугольника равна 42*48 / 2 = 1008 см²
Объяснение:
Объяснение:
Треугольник , у которого один угол прямой, а два других острые.
Гипотенуза.
Если острый угол прямоугольного треугольника равен 30°, то катет,лежащий напротив него равен половине гипотенузы.
№4
угол BAС=180-(90+42)=48 градусов.
№5
АВ=ВС*2=12*2=24см
№6
Бокова сторона АС является гипотенузой треугольника АСД. Катет СД равен половине гипотенузы. СД=АС:2=7:2=3,5 см.Поэтому угол САД= 30°. Угол АСВ= 180°-(90°+30°)=60°,Угол АСВ=СВА=60°,значит и угол САВ=60°
ответ: в равнобедренном треугольнике АВС все углы равны 60°
№7
Высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника является медианой и делит его ещё на два равнобедренных прямоугольных треугольника .В получившихся треугольниках эта высота становится катетом. 18:2= 9см,значит и высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника равна 9 см.