я так понимаю. что про АК и КС сообщили, чтобы пустить по ложному пути доказательство.) это условие тут ни к чему. Действительно, т.к. SB⊥(АВС), то SB перпендикулярна любой прямой, лежащей в плоскости АВС, в т.ч. и прямой СВ, которая является проекцией наклонной SС на плоскость АВС, СВ⊥АС по условию, но тогда по теореме о трех перпендикулярах и сама наклонная SС перпендикулярна АС, значит, ∠SCB- линейный двугранного угла при ребре АС, и этим линейным углом измеряется угол между плоскостями ABC и SAC
ответ ∠SCB
AS - боковое ребро =13.
SH - апофема = 10.
АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или
АН=√(169-100)=√69.
АВ=2√69.
АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула).
СН=(√3/2)*2√69=3√23.
НО=(1/3)*СН (свойство медианы) или
НО=√23.
Из прямоугольного треугольника SOH по Пифагору:
SO=√(SH²-HO²) или SO=√(100-23) =√77.
ответ: SO=√77.