1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.
сейчас все решим и разберём :)
в равнобедренном треугольнике высота является и медианой и биссектрисой, и это нам
Угл при вершине (<B) равен 120° по условию
Рассмотрим ∆BDC - прямоугольный
Т.к высота является и биссектрисой, то угл <DBC = половине угла <B = 120/2 = 60°
Мы видим в этом прямоугольном треугольнике, что наша высота (BD) лежит напротив угла <BCD, который равен 180-(60+90) = 30°, а мы знаем, что в прямоугольном треугольнике катет напротив угла в 30° равен половине гипотенузы =>
=> BC = BD*2 = 13*2=26
Объяснение:
ответ будет 34