Сравнить углы можно двумя наложением или измерением их величин.
Рассмотрим, как сравнивать углы путём наложения. Дано два угла, ∠BOA и ∠COA:
Чтобы выяснить, равны они или нет, наложим один угол на другой так, чтобы вершина одного угла совпала с вершиной другого угла и сторона одного угла совместилась со стороной другого:
Мы видим, что ∠СOA составляет часть ∠BOA, поэтому ∠СOA меньше ∠BOA, это записывают так: ∠COA < ∠BOA или ∠BOA > ∠COA.
Если при наложении углов обе их стороны совмещаются, то углы равны.
При сравнении углов путём измерения их величин больше будет тот угол, у которого больше величина:
Так как величина ∠BOC (60°) меньше, чем величина ∠MON (70°), то ∠BOC < ∠MON.
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.