Вариант решения Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом. Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности. Т.е. точки С и В₁ будут лежать на одной и той же окружности. Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В. Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
25см
Объяснение:
диагонали прямоугольника равны, и в точке пересечения О делятся пополам
АС=BD, AO=OC=BO=OD
противоположные стороны прямоугольника попарно равны и параллельны AB=CD, AD =BC
Pтреугольника АОВ =АВ+АО+ОВ
АО = ОВ
и так как диагонали равны и точкой пересечения делятся пополам, то АО+ОВ =АС
Р= 8+17=25 см