1) неизвестный отрезок является гипотенузой прямоугольного треугольника:
2) неизвестный отрезок является высотой, проведённой к основанию, в равнобедренном треугольнике. Как известно, высота, проведённая к основанию, в равнобедренном треугольнике является также медианой и биссектрисой. Следовательно неизвестный отрезок делит основание пополам и является катетом в прямоугольном треугольнике с гипотенузой равной 5 и катетом равным :
3) Здесь имеется три неизвестных отрезка, два из которых равны.
Начнём с высоты, опять же она проведена к основанию в равнобедренном треугольнике, а значит является и медианой и биссектрисой. А медиана проведённая к гипотенузе в прямоугольном треугольнике равна половине гипотенузы:
Нам известно, что оставшиеся неизвестные отрезки являются катетами в прямоугольном треугольнике и что они равны. Нам известна гипотенуза этого треугольника:
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
Объяснение:
Обозначим неизвестные отрезки за x
1) неизвестный отрезок является гипотенузой прямоугольного треугольника:
2) неизвестный отрезок является высотой, проведённой к основанию, в равнобедренном треугольнике. Как известно, высота, проведённая к основанию, в равнобедренном треугольнике является также медианой и биссектрисой. Следовательно неизвестный отрезок делит основание пополам и является катетом в прямоугольном треугольнике с гипотенузой равной 5 и катетом равным
:
3) Здесь имеется три неизвестных отрезка, два из которых равны.
Начнём с высоты, опять же она проведена к основанию в равнобедренном треугольнике, а значит является и медианой и биссектрисой. А медиана проведённая к гипотенузе в прямоугольном треугольнике равна половине гипотенузы:
Нам известно, что оставшиеся неизвестные отрезки являются катетами в прямоугольном треугольнике и что они равны. Нам известна гипотенуза этого треугольника: