Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024. Отсюда х = корень(1024) = 32.
Дана правильная шестиугольная пирамида со стороной основания а = 10 см.
Длина отрезка, соединяющего вершину пирамиды с центром основания (а это высота пирамиды Н), равна √69 .
Найти: a) боковое ребро L и апофему A;
Проекция бокового ребра на основание равна радиусу описанной окружности и равна стороне основания.
L = √(69 + 100) = √169 = 13.
A = √(169 - (10/2)²) = √(169 - 25) = √144 = 12.
б) боковую поверхность: Sбок = (1/2)РА = (1/2)*6*10*12 = 360 кв.ед.
в) полную поверхность пирамиды.
Sосн = 3√3*100/2 = 150√3 кв.ед.
S = So + Sбок = (150√3 + 360) кв.ед.