12√3 или 9√3
Объяснение:
Острый угол ромба диагональю делится пополам (по свойству биссектрисы равнобедренного треугольника), потому выразим тангенс половинного угла через известный тангенс угла и найдём его:
tgα = 8 = 2tg(α/2)/(1 - tg²(α/2)) ⇒ 4t² + t - 4 = 0, где t = tg(α/2).
t = 3/4, tg(α/2) = √3/2 (все отрицательные варианты убираем, так как угол острый).
Далее возможны 2 случая: известная диагональ 1) малая или 2) большая.
1. Вторая диагональ равна 2*6/√3 = 4√3.
Площадь ромба равна 1/2*6*4√3 = 12√3.
2. Вторая диагональ равна 2*3√3/2 = 3√3.
Площадь ромба равна 1/2*6*3√3 = 9√3.
Через вершину конуса с основанием радиуса R проведена плоскость, которая пересекает его основание по хорде, которую видно из центра основания под углом α, а из вершины – под углом β. Найти площадь сечения.
--------
Данное сечение конуса - равнобедренный треугольник. Пусть сторона этого треугольника равна а.
Тогда его площадь можно выразить S=a²•sinβ/2.
1) Примем длину хорды равной х. Тогда из треугольника в основании, образованного хордой и двумя радиусами, квадрат её длины можно выразить по т.косинусов.
х²=2R²-2R²•cosα=2R²(1-cosα)
2) Выразим квадрат длины хорды по т.косинусов из треугольника в сечении:
х²=2а²-2а²•cosβ=2а²(1-cosβ)
3) Приравняем найденные значения х²
2R²(1-cosα)=2а²(1•cosβ)
Выразим а² из этого уравнения:
а²=R²(1-cosα):(1-cosβ)
Отсюда
S сечения=[R²(1-cosα):(1-cosβ)]•sinβ:2