Вычисляем для начала длину медианы треугольника, обозначим её за m.
В правильном (равностороннем) треугольнике m=(√3/2)*a, где a- сторона треугольника.
m=(√3/2)*12=6√3 см
Далее воспользуемся следующим свойством медиан треугольника:
"Медианы треугольника пересекаются в одной точке (называемой центроидом), и делятся этой точкой на две части в отношении 2:1, считая от вершины"
Таким образом меньший участок медианы равен:
6√3/3=2√3
И теперь по теореме Пифагора находим нужное расстояние (рисунок уж я не стал делать...):
√((2√3)²+2²)=√(12+4)=√16=4 см
Обозначим вершины треугольника АВС, основание высоты - Н.
Длина окружности =2 π r
2 п r=50 π
Коротко запись задачи выглядит так:
r=50п:2п=25
32-25=7
Р= 2√(25²-7²)+2√(32²+24²)=128см
Подробно:
Высота равнобедренного треугольника - срединный перпендикуляр.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров. Так как радиус меньше высоты треугольника, центр лежит на этой высоте. Обозначим центр О.
Расстояние от вершины треугольника В до центра окружности О равно R
Расстояние ОН от центра окружности до середины основания треугольника АВС
32-25=7 см
Соединим центр О с вершиной угла основания. Получим треугольник АОН.
АО= радиусу и равна 25 см
Найдем половину основания по формуле Пифагора из треугольника АОН
АН=√(25²-7²)=24 см
Основание треугольникаАС равно 2*24=48см
Из треугольника АВН найдем боковую сторону треугольника АВ
АВ=√(32²+24²)=40смВС=АВ=40 см
Периметр Δ АВС
Р=2·40+48=128 см
50м,50м,60м.
Объяснение:
почему так мало