1.Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки
2.Треугольник называется разносторонним, если любые две стороны его не равны друг другу
3.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине
4.Равносторонний треугольник - это треугольник у которого все стороны равны между собой, а все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
5.Остроугольный-если все его три угла острые т.е. меньше 90 градусов
6.Прямоугольный-треугольник,у которого есть прямой угол, т.е. угол, равный 90 градусам
7.Если один из углов треугольника тупой, то треугольник называется тупоугольным
Окружность, вписанная в правильный многоугольник, и окружность, описанная около него, имеют общий центр, причем, так как стороны многоугольника - касательные для вписанной окружности, её радиус является высотой равнобедренного треугольника соединяющего центр с вершинами описанного многоугольника. (см. рисунок).
На рисунке О - центр окружностей, ОА=ОВ=R=8, ОН=r=4√3. Треугольник ОНВ прямоугольный. Sin∠OAH=ОН:ОА=4√3:8=√3/2 - это синус 60°. Следовательно, в равнобедренном треугольнике углы при АВ=60°, ⇒ ∠АОВ=60°, а ∆ АОВ - равносторонний. Сторона данного многоугольника АВ=8. Угол АОВ - центральный, делит окружность на 360°:60°=6 равных углов, противолежащих каждой стороне многоугольника. ⇒ Данный многоугольник имеет 6 сторон.