Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
Будем считать, что условие я, всё-таки, понял правильно.... Смотрим рисунок: В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60° Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний: ОС=ОВ=ВС=10 см ∠САВ=30°, значит гипотенуза АВ=2ВС=20 см Меньшая средняя линия равна половине меньшей стороны: ОМ=ВС/2=5 см