Объяснение:
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
.
Теперь находим площадь сечения:
≈706,86
Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°