Если соединить середины двух сторон, то получится средняя линия треугольника, равная половине третьей стороны. Точно так же и с остальными двумя соединениями. Таким образом, получается треугольник, составленный из средних линий данного треугольника. Он подобен данному треугольнику с коэффициентом подобия 1/2, то есть каждая его сторона вдвое меньше соответствующей стороны исходного треугольника. Значит, если в исходном треугольнике две стороны были равны между собой, то и в новом треугольнике две соответствующие стороны будут равны друг другу.
1. Дано: две концентрические окружности. АD-диаметр большей, СВ- диаметр меньшей окр.
Найти АВ/СD
Решение.
Треугольники АОВ и DОС равны по 1 признаку равенства треугольников. в них АО=DО как радиусы большой окружности, ОВ=ОС как радиусы малой окружности, углв АОВ и DОС равны как вертикальные, а из равенства треугольников следует равенство сторон АВ и СD, поэтому отношение равных сторон равно единице.
2. Дано. АВ- диаметр окружности. радиус =6 см
∠АВК=30°
Найти расстояние от точки А до прямой ВК
Решение.
соединим А и К, угол АКВ=90°, т.к. это вписанный угол, опирающийся на диаметр АВ, равный 2*6, а расстояние АК- искомое, это катет, лежащий против угла в 30°, он равен половине гипотенузы, т.е. 2*6*2=6/см/