Вот........
ЭТА ЗАДАЧА ПО ГЕОМЕТРИИ КАК ДОКАЗАТЬ
ТУТ ПИШЕМ ПРЯМО ЧТО МЫ ДЕЛАЕМ А ПОТОМ И РЕШАЕМ.
Если не понятен почерк вот решение
Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они прямоугольные, углы HAK и KAN равны, поскольку АК — биссектриса, сторона AK — общая, следовательно, треугольники равны. Тогда KN=KH=4. Аналогично, равны треугольники BKH и BKM, откуда MK=KH=4.
Найдём площадь параллелограмма как произведение основания на высоту.
S=AD*MN=AD*(MK+KN)=7*(4+4)=7*8=56
ЧТД
ответ:56см
20
Объяснение:
Строим из Е прямую, параллельную основанию. Получаем точку F. К ней проводим из С отрезок. Угол FCB при этом 60, т.к. ВС и FE параллельны. Точка пересечения FC и ВЕ - О. Опускаем из А биссектрису в т.О. Треугольник FEO равносторонний, углы по 60.
Угол DCF=10, FDC=30 (180-70-60). Угол ВАО=10, угол АОF=30 (60/2). FC=АF (т.к. углы А и АСF по 20 градусов). Значит, треугольники АОF и СDF равны. значит DF=OF. Но FEO - равносторонний, значит DF=FE. Т.е. треугольник DFE равнобедренный. Угол DFE=80, следовательно углы FDE и FED равны 50 градусов ((180-80)/2). Значит, искомый угол EDC=EDF-CDF=50-30=20.