Насколько я поняла Углы при основании равны 62 градусам, а т.к. у равнобедренного треуг. углы при основании равные, то 2 угла при основании равны 62 градусам..Найдем величину 3 угла, 180-(62+62)= 56..Отметим углы буквами: A, B,C..Угол А=62градуса, В=56градусов, С=62 градуса..Попробуйте построить треугольник равноб, где при основании будут равные 62 градусам углы, на рисунке видно, что стороны АВ и ВС гораздо больше стороны АС..Следовательно из этого, наибольшие стороны треугольника- это АВ и ВС, 2 стороны , т.к. треугольник равнобедренный
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.