Параллелограмм АВСД. Проведем биссектрису угла А, она пересечет сторону ВС в точке Н (<BAН=<ДAН). Вторая биссектриса ула В перескает сторону АД в точке М (<АВМ=<СВМ). У параллелограмма углы, прилежащие к любой стороне, в сумме равны 180° (<А+<В=180). Значит половины этих углов <ВАН+<АВМ=90° Тогда в ΔАВК <АКВ=180-(<ВАК+<АВК)=180-90=90°. Проведем окружность диаметром АВ. Если вписанный угол опирается на диаметр этой окружности, значит он -прямой. У нас <АКВ=90°, значит он опирается на диаметр и является вписанным углом в эту окружность. Вписанный угол — угол, вершина которого лежит на окружности, значит К лежит на окружности, что и требовалось доказать
Дано:
прямоугольный треугольник АВС.
Высота из прямого угла ВН
НС=АН+11
ВС/АВ=6/5
1. Обозначим отрезок АН за х, тогда НС=х+11
По теореме Пифагора ВС²+АВ²=АС²
Выразим длины катетов через а:
ВС=6*а, АВ=5*а
(6а)² + (5а)² = (2х+11)²
61а²=(2х+11)²
2. Выразим высоту h через треугольник АВН: h²=25a²-x²
и подставим полученное значение в треугольник ВНС:
h²+(x+11)²=36a²
25a²-x² + (x²+22x+121)=36a²
сокращаем выражение и получаем: а²=2х+11
3. Подставляем выражение, полученное во втором действии в выражение, полученное в первом действии:
61(2х+11)=(2х+11)²
61=2х+11
Заметим, что 2х+11=с - гипотенуза треугольника АВС.
ответ: с=61 см.