Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².
Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².
Перенесем ВД II самой себе на вектор ВС, точка Д попадет в точку К на прямой АД, ДК=b и треуг. АСК по площади равен тоже S ( т.к. АК=а+b, а высота = высоте трапеции), треуг. АСК подобен треуг. как АОД и их площади относятся как квадраты сходственных сторон, поэтому ,если S1-площадь АОД, то S/S1=(a+b)^2/a^2 , S1=(a^2/(a+b)^2)*S.