1) х=9
2) S(ACD)=S(BCD)
Объяснение:
1.
По свойству биссектрисы треуголь
ника: х:3=6:2
х=6×3:2
х=9
между х и 9 нужно поставить
знак равенства.
2.
1)Треугольник АВС прямоугольный:
<В=180°- (90°+30°)=60°
Из треуг.ВСD: <D=<B=60°
как углы при основании ВД равно
бедренного треугольника.
<ВСD=180°-60×2=60°
Получили, что в треуг. ВСD все уг
лы равны, следовательно, треуг. ВСD
равносторонний.
2)Из треуг. АСВ:
СВ - катет, лежащий против угла в
30°, следовательно,
СВ=1/2АВ
АВ=2×СВ=2×СД
АD=DВ
3)
У треугольников АСD CDB высоты
совпадают:
S(ACD)=AD×h/2=DB×h/2
S(BCD)=DB×h/2
S(ACD)=S(BCD)
между S(ACD) и S(BCD) нужно
поставить знак равенства.
сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
s = 3*2 = 6
так что площадь сечения будет 6 кв. ед. ))