Середня лінія MK трапеції ABCD (BC || AD) дорівнює 56 см . Через середину M сторони AB проведено пряму , яка паралельна стороні CD і перетинає основу AD у точці E так , що AE : ED =5:8 . Знайдіть основи трапеції
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D). SinD=EP/HD => EP=DH*SinD. SinD=GP/HC => GP=HC*SinD. PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH). Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD. Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG. Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4. Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4. Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD). Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон"). В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD. Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2. По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD). Отсюда 1/SinD==2 и SinD=1/2. ответ: острый угол D трапеции равен 30°.
ответ: 20.
Объяснение:
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.