1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.
12см.
Объяснение:
Найдем половину диагонали.
10:2=5см.
Половина диагонали, высота и ребро пирамиды образуют прямоугольный треугольник. Где ребро пирамиды является гипотенузой.
По теореме Пифагора найдем высоту.
√(13²-5²)=√(169-25)=√144=12см высота пирамиды