Пусть х- один угол, тогда второй - х+30. При пересечении диагоналей образуется прямоугольный треугольник с углом 90 градусом.
х+х+30+90=180
2х+120=180
2х=60
х=30
1 угол = 30 градусов, тогда 2 угол 2х30=60
Поскольку ромб это параллелограмм то он имеет все свойства параллелограмма, соответственно противолежащие углы равны. Тоесть, если 1 угол равен 30, то противолежащий угол тоже равен 30 градусов. С 2 углом тоже самое. ответ: 30, 60, 30, 60.
Такс, в ромбе диагональ выполняет функцию биссектрисы, значит 2х30=60, 2х60=120, потому что биссектриса делит углы пополам.
) ABCDA1B1C1D1 - прямая призма, основание - ромб ABCD; ∠BAD = 60°; H = AA1 = 10 AB = BC = CD = AD = a; P = 4a = S(бок) /H = 24; a = 6 треугольники ABD и BCD - равносторонние S(сеч) = S(BDD1B1) = BD·H = 6·10 = 60 (см²) 2) Если все боковые ребра пирамиды наклонены к плоскости основания (прямоугольный треугольник ABC, ∠B = 90) под одинаковым углом (90 - 45 = 45), то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр (точка O, лежит на середине гипотенузы) описанной около основания окружности. AC = 2·4·tg(45) = 8 BC = AC·cos(30) = 4√3 AB = AC·sin(30) = 4 OH⊥AB; OH = BC/2 = 2√3 OK⊥BC; OK = AB/2 = 2 DH = √(OD² + OH²) = 2√7 DK = √(OD² + OK²) = 2√5 S(бок) = (1/2)(8·4 + (2√7)·4 + (2√5)·(4√3)) = 4(4 + √7 + √15) (см²) надеюсь
Объяснение:
ответ, проверенный экспертом
4,6/5
237
Владимир1111111
хорошист
12 ответов
3.4 тыс. пользователей, получивших
Пусть х- один угол, тогда второй - х+30. При пересечении диагоналей образуется прямоугольный треугольник с углом 90 градусом.
х+х+30+90=180
2х+120=180
2х=60
х=30
1 угол = 30 градусов, тогда 2 угол 2х30=60
Поскольку ромб это параллелограмм то он имеет все свойства параллелограмма, соответственно противолежащие углы равны. Тоесть, если 1 угол равен 30, то противолежащий угол тоже равен 30 градусов. С 2 углом тоже самое. ответ: 30, 60, 30, 60.
Такс, в ромбе диагональ выполняет функцию биссектрисы, значит 2х30=60, 2х60=120, потому что биссектриса делит углы пополам.