1)Рассмотрим парал-м АBCD.
Угол В =150 ,значит угол А = (360-2*150):2 =30
2)S парал-ма = Высота на основание ( а * h)
Пусть основание равно 16( а=16), то боковая сторона равна 12.
Есть правило ! Катет, лежащий, против угла в 30 градусов равен половине гипотенузы ! Значит , катет ,который лежит против угла в 30градусов в нашем случаи равен 12 :2 =6. 6-это высота для парал-ма.
Вернёмся в формулу площади парал-ма : S = а * h.
Подставим
S ABCD =16 *6 = 96 см^2
НЕ ЗАБЫВАЕМ , ЧТО ПЛОЩАДЬ ИЗМЕРЯЕТСЯ В САНТИМЕТРАХ КВАДРАТНЫХ !
ответ : S ABCD = 96 см^2
Объяснение:
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
1) Вычислить площадь трапеции у которой сумма оснований равна20см а высота 6см
Sтр= h*(а+в) /2
S=(20/2) *6=60cm^2
2. В треугольнике АВС стороны АС и Ав соответственно равны 7см и 5 см. а сторона ВС 8см Найти cos угла А трпеугольника АВС
из т.косинусов
a^2=b^2+c^2 -2bc*cosA cosA=( b^2+c^2-a^2) / 2bc
пусть АВ=с., ВС=а, СА=в , тогда cosA= (49+25-64)/2*7*5=1/7