М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RassvetZaGorami
RassvetZaGorami
26.02.2023 13:16 •  Геометрия

На отрезке мн обозначена точка атак, что ма: ан=2: 3 найти длину отрезка ан, если мн=25см диагональ ромба образует с его стороной угол 35 градусов найти градусную меру большего угла ромба

👇
Ответ:
Tima2005777
Tima2005777
26.02.2023

общий делитель для искомых отрезков x
2x+3x=25
5x=25
X=5
находим  длину отрезка АН
3*5=15 
длину отрезка  МА
2*5=10

4,7(14 оценок)
Ответ:
DarkWolf100
DarkWolf100
26.02.2023

   Так как МА:АН = 2:3, то весь отрезок МН равен 2 +3 = 5 частей , тогда одна часть 25:5 = 5 (см). так как АН равна 3 части, то АН = 3·5 = 15 (см)

ответ: АН = 15 см.

Диагональ ромба одновременно есть его биссектрисой, т.е. острый угол 35° ·2 = 70°, тогда тупой угол 180° - 70° = 110°

ответ: 110°

4,5(71 оценок)
Открыть все ответы
Ответ:
bonusalixova
bonusalixova
26.02.2023
 АВ=АС=b, BC=a, биссектрису BL=d, угол ABL=альфа,  ABC=ACB=(2альфа) BAC=(180-4альфа) < 45 градусов, т.е. 2 < 90 градусов, угол ALB=(3альфа)по т.синусов: a*sin(2альфа) = b*sin(180-4альфа)a = b*sin(180-4альфа) / sin(2альфа) = b*sin(4альфа) / sin(2альфа) = = 2*b*cos(2альфа) AL*sin(3альфа) = b*sin(альфа)d = BC - AL = a - b*sin(альфа) / sin(3альфа) = = 2*b*cos(2альфа) - b*sin(альфа) / sin(3альфа) = = b* ( 2*cos(2альфа) - sin(альфа) / sin(3альфа) ): d = 2*a*b*cos(альфа) / (a+b)a+b = 2*b*cos(2альфа) + b = b*(2*cos(2альфа) + 1)d = 2*2*b*cos(2альфа)*b*cos(альфа) / ( b*(2*cos(2альфа) + 1) ) = = 4*b*cos(2альфа)*cos(альфа) / (2*cos(2альфа) +  иsin(альфа) / sin(3альфа) = = 2*cos(2альфа) - 4*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 2*cos(2альфа)*(4*(cos(альфа))^2 - 1) = 1 + 4*cos(2альфа)*cos(альфа). cos(альфа) = +- 1/2(см. выше... cos(альфа)  0.94 (0.9396)40, 40, 100
4,5(83 оценок)
Ответ:
Slavaevdok2017
Slavaevdok2017
26.02.2023
Обозначим стороны АВ=АС=b, BC=a, биссектрису BL=d, угол ABL=альфа, тогда углы при основании треугольника ABC=ACB=(2альфа)угол при вершине BAC=(180-4альфа)и альфа должен быть < 45 градусов, т.е. 2альфа должен быть < 90 градусов, т.к. в равнобедренном треугольнике угол при основании не может быть тупым...угол ALB=(3альфа)по т.синусов: a*sin(2альфа) = b*sin(180-4альфа)отсюда a = b*sin(180-4альфа) / sin(2альфа) = b*sin(4альфа) / sin(2альфа) = = 2*b*cos(2альфа)по т.синусов: AL*sin(3альфа) = b*sin(альфа)по условию задачи d = BC - AL = a - b*sin(альфа) / sin(3альфа) = = 2*b*cos(2альфа) - b*sin(альфа) / sin(3альфа) = = b* ( 2*cos(2альфа) - sin(альфа) / sin(3альфа) )для длины биссектрисы справедлива формула: d = 2*a*b*cos(альфа) / (a+b)отдельно запишем a+b = 2*b*cos(2альфа) + b = b*(2*cos(2альфа) + 1)d = 2*2*b*cos(2альфа)*b*cos(альфа) / ( b*(2*cos(2альфа) + 1) ) = = 4*b*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)если приравнять два получившихся равенства для биссектрисы d, то длина стороны b сократится и останется тригонометрическое равенство:sin(альфа) / sin(3альфа) = = 2*cos(2альфа) - 4*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)после несложных преобразований можно получить равенство:2*cos(2альфа)*(4*(cos(альфа))^2 - 1) = 1 + 4*cos(2альфа)*cos(альфа)это выражение можно привести к полному уравнению четвертой степени относительно косинуса альфа одно из решений здесь очевидно... cos(альфа) = +- 1/2но этот угол не может быть в равнобедренном треугольнике (см. выше...)))если решать оставшееся кубическое уравнение, то единственным подходящим решением получается cos(альфа) =примерно= 0.94 (0.93969)это угол около 20 градусовтогда углы данного равнобедренного треугольника 40, 40, 100
4,4(82 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ