Дві прямі на площині можуть мати спільну точку або не мати спільних точок. Дві прямі, які мають спільну точку, називаються прямими, що перетинаються.
Означення. Дві прямі, які лежать в одній площині і не перетинаються, називаються паралельними.
Паралельність прямих позначається знаком . Паралельність прямих а і b записується так: .
Аксіома паралельних прямих
Через точку, яка не лежить на даній прямій, можна провести в площині єдину пряму, паралельну даній прямій.
Нехай прямі а і b перетинаються третьою прямою с, яка називається січною. Тоді утворюється вісім кутів, які мають спеціальні назви: кути 3, 4, 5, 6 – внутрішні, кути 1, 2, 7, 8 – зовнішні.
Пари кутів 1 і 5, 2 і 6, 3 і 7, 4 і 8 називаються відповідними, пари кутів 3 і 6, 4 і 5 – внутрішніми різносторонніми, пари кутів 1 і 8, 2 і 7 – зовнішніми різносторонніми. Пари кутів 3 і 5, 4 і 6 називаються, 1 і 7, 2 і 8 – зовнішніми односторонніми.
Якщо дві паралельні прямі а і b перетнуті прямою с, то:
внутрішні різносторонні кути ріні, тобто ;
сума внутрішніх односторонніх кутів дорівнює 180°, тобто , ;
відповідні кути рівні, тобто ;
зовнішні різносторонні кути рівні, тобто ;
сума зовнішніх односторонніх кутів дорівнює 180°, тобто .
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9
вот собственно......