Сначала - вс задачка. Есть равнобедренный треугольник, заданы высота h и основание a, надо найти радиус описанной окружности.
Самый простой (с точки зрения работы мозга, а не с точки зрения тупого применения формул рассматривать высоту треугольника, как высоту кругового сегмента, отсекаемого хордой длины а. Расстояние до хорды тогда R - h, и мы имеем соотношение (R - h)^2 + (a/2)^2 = R^2; откуда R = (h^2 + (a/2)^2)/(2*h);
При а = h; R = h*(1/2 + 1/8) = 5*h/8; (полезно запомнить); при h = 8; R = 5.
Теперь - собственно решение задачи.
Поскольку А равноудалена от вершин треугольника, её проекция на основание - это центр описанной окружности, а проекция наклонной из точки А равна R = 5;
Поэтому расстояние от А до вершины (любой) равно корень(5^2 + 12^2) = 13;
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2