ответ: угол L=12°; угол К=углу С= 84°
Объяснение: рассмотрим ∆СКМ и ∆СLM, на которые делит ∆KLC биссектриса. Если в ∆CLM угол CML=126°,то в ∆СКМ угол СМК=180-126=54; угол СМК=54°
Зная, что ∆KLC равнобедренный, значит его углы при основании КС Равны: угол К= углу С. Так как биссектриса делит угол С пополам, то угол КСМ будет в 2 раза меньше угла К. Пусть угол КСМ=х, тогда угол К=2х. Зная что сумма углов треугольника 180°, составляем уравнение:
х+2х+54=180
3х+54=180
3х=180-54
3х=126
х=126÷3
х=42; часть угла С =42°.
Теперь найдём угол К = целому углу С: 42×2= 84; угол К=углу С=84°
Теперь найдём угол L:
180-84-84=12; угол L=12°
1) В ромбе ABCD точки F, P и M – середины сторон BC, CD, и AD соответственно. Найдите сумму длин диагоналей ромба, если АВ = 5 см, а периметр треугольника FPM равен 12 см.
————
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Так как точки F, P и M – середины сторон BC, CD и AD, отрезок FP — средняя линия ∆ BCD и равна половине диагонали ВD; МР - средняя линия ∆ АСD и равна половие диагонали АС.
FP║BD; MP║AC; a так как АС⊥ВD, то FP⊥МР. ⇒ ∆ MFP – прямоугольный.
Ромб - параллелограмм, все стороны ромба равны. Поэтому равны и их половины. BF=AM, ВF и АМ параллельны⇒
АВFM - параллелограмм, MF=AB=5 см.
Периметр ∆ MFP=5+FP+MP=12 (см) ⇒ FP+MP=12-5=7 (см)
Диагонали ромба вдвое больше катетов ∆ MFP, ⇒
BD+AC=2•( FP+MP)=2•7=14 (см).
—————
2) В четырехугольнике ABCD диагонали AC и BD перпендикулярны. Точки M, F, K и P – середины сторон АВ, BC, СD и DA соответственно. Докажите, что MK = FP.
Точки M, F, K и P – середины сторон четырехугольника ABCD, поэтому являются средними линиями треугольников АВС, ВСD, АСD и АВD. По свойству средней линии треугольника:
МР=FK и параллельны BD, а MF=P и параллельны АС.
АС⊥BD , ⇒ соседние стороны четырехугольника PMFK , которые им параллельны, взаимно перпендикулярны. PMFK - прямоугольник, МК и PF его диагонали. Диагонали прямоугольника равны. MK и FP – его диагонали. ⇒ MK = FP