М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
esenjel
esenjel
24.05.2022 18:21 •  Геометрия

Найдите площадь треугольника, две стороны которого равны 16 и 12, а угол между ними равен 30° (только без синуса)​

👇
Открыть все ответы
Ответ:
KozlovaAlisa
KozlovaAlisa
24.05.2022
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².

2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.

1) основание прямой призмы – прямоугольный треугольник с гипотенузой 5см и катетом 12см. найдите пло
1) основание прямой призмы – прямоугольный треугольник с гипотенузой 5см и катетом 12см. найдите пло
4,4(45 оценок)
Ответ:
ulya061
ulya061
24.05.2022

Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.

Точка М - центр описанной окружности.

Точка О - центр вписанной окружности.

Тогда R=2,5см, то есть ВМ=2,5см.

Радиус вписанной окружности равен по формуле:

r=(AC+BC-АВ)/2 = 2/2=1см.

Итак, СН=r=1см => HB=3-1=2см.

PB=HB=2см (касательные из одной точки).

Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:

ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .

ответ: расстояние между центрами окружностей равно

√1,25 ≈ 1,12 см.

Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:

d² = R² - 2·R·r.

В нашем случае R = 2,5см, а r = 1cм.

тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.


Найдите расстояние между центрами вписанной и описанной окружностей прямоугольного треугольника с ка
4,8(57 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ