ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
Объяснение:
402
х - периметр
1 случай: основание = x - 40; боковые стороны = x - 30
x - 40 + 2(x-30) = 3x - 100 = x - периметр
2x = 100
x = 50
основание = 10, боковые стороны по 20
2 случай: основание = x - 30; боковые стороны = x - 40
x - 30 + 2(x-40) = 3x - 110 = x - периметр
2x = 110
x = 55
основание 25; боковые стороны по 15
404
x - углы при основании; 180 - 2x - между боковыми сторонами
1 случай:
x + (180-2x) = 60
x = 120 - невозможно
2 случай:
x + x = 60
x = 30
углы при основании по 30, угол между боковыми сторонами 180-60=120
405
Внешний угол при основании не может быть острым, потому что тогда сам угол при основании будет тупым - этот случай отпадает
Соответственно, угол между боковыми сторонами равен 180-15=165
Тогда углы при основании равны 15/2 = 7,5