Мы знаем,что у треугольника 3 стороны, значит чтобы найти периметр,нужно их сложить.
P∆=a+b+c.
Чтобы найти периметр, нужно знать его все стороны.
Пусть x будет коэффициент, значит 6х,5х,4х} стороны треугольника. P=75см.
По условию задачи составим и решим уравнение:
6х+5х+4х=75см.
15х=75см.
х=75:15
х=5
Мы узнали сколько будет x, тогда узнаем все остальные его стороны.
|ст.=6х=6•5=30см.
||ст.=5х=5•5=25см.
|||ст.=4х=4•5=20см.
ПРОВЕРКА:
30 СМ + 25 СМ + 20 СМ=75 СМ.
75см.=75см.
ответ: |ст.=30см.;
||ст.=25см.;
|||ст.=20см.
Доказательство в объяснении.
Объяснение:
Дан треугольник АВС с основанием АС и высотой h, проведенной к основанию. Стороны треугольника
АВ = "с", ВС = "а".
Пусть основание делится высотой на отрезки, равные x и y, считая от вершины А.
Тогда из прямоугольных треугольников, на которые высота делит исходный треугольник, имеем:
x = c*cosa. y = a*cos2a.
c = h/sina. a = h/sin2a. cos2a = h/а. =>
x = h*cosa/sina. y = h*cos2a/sin2a.
x - y = h(cosa/sina - cos2a/sin2a).
Sin2a = 2sina·cosa. (формула двойного аргумента)
Cos2a = 1 - 2sin²а. (формула двойного аргумента) Тогда
cosa/sina - cos2a/sin2a =
(cosa·sin2a - cos2a·sina)/(sina·sin2a). =>
sina(2cos²а - cos2a)/(sina·cos2a)=(2cos²а - cos2a)/(cos2a).
(2cos²а - 1 + 2sin²а)/(cos2a) =
(2cos²а + 2sin²а - 1)/(cos2a) = 1/cos2a. =>
x - y = h/cos2a.
cos2a = h/а. =>
x - y = h/(h/а) = а.
Что и требовалось доказать.
Соотношение сторон х/у=2/5 => x=2y/5
Площадь S=x*y => 520=2*y^2/5 => 5*520/2=y^2 => 5*260=y^2 => 1300=y^2 => y≈36 см.
520/36≈14.4≈х
Периметр равен 2*14.4+36*2=28.8+72=100.8 см