Ознаки рівності прямокутних трикутників:
Якщо гіпотенуза й катет одного прямокутного трикутника відповідно рівні гіпотенузі й катету іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катети одного прямокутного трикутника відповідно рівні катетам іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катет і протилежний до нього гострий кут одного прямокутного трикутника відповідно рівні катету і протилежному до нього гострому куту іншого прямокутного трикутника, то такі трикутники рівні.
Объяснение:
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
1)Диагонали ромба явл биссектрисами его углов и взаимноперпендикулярны т е образуют прямоугольные треугольники. В данной задаче, рассмотрим прямоугольный треугольник АВО.
2)Угол АВО=СВО=30 градусов, т к по условию острый угол АВС=60 градусов.
3)Катет, лежащий против угла в 30 градусов, равен половине гипотенузы т е АО=1/2*АВ=1/2*49=49/2. Вся диагональ АС=2АО=49/2*2=49см.
ОТВЕТ:49см.