Шаг 1. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки) . Шаг 2. Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Шаг 3. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса. Объяснение. Если соединить засечки, сделанные на шаге 1 с точкой пересечения дуг, то получится ромб. Диагональ ромба является биссектрисой его противоположных углов.
M- точка пересечения диагоналей. Прямоугольные треугольники ADM и ADE подобны, то есть AM/AB = AB/AE; или AM*AE = AB^2; Ясно, что AM = AC/2; Для AE возможны два варианта 1) точка E лежит ВНУТРИ ромба. В этом случае угол A ромба острый. AE = AC - CE; Получается уравнение (AC/2)*(AC - 12) = 8^2*5; AC^2 - 12*AC - 640 = 0 ; или AC = 32; отсюда AM = 16; BM^2 = (8^2*5 - 16^2) = 8^2; BD = 2*BM = 16; это меньшая диагональ. 2) точка E лежит ВНЕ ромба. В этом случае угол A ромба тупой. AE = AC + CE; Получается уравнение (AC/2)*(AC + 12) = 8^2*5; AC^2 + 12*AC - 640 = 0; или AC = 20; это меньшая диагональ. В задаче есть 2 варианта решения - в зависимости от того, где лежит точка E (или - какой угол A - острый или тупой).