По построению треугольник АBH прямоугольный , следовательно угол Н= 90 градусов,угол А= 60 по условию, угол В= 30 по условию, что сумма углов треугольника равна 180 градусов. Так как ВА является гипотенузой и по условию равна 8 см, можно найти катеты треугольника : ВН=ВА*cos30 или ВН=ВА*sin60 ,а катет АН=AB*sin30 или AH=AB*cos60
ВН=8*cos30=8*0,86=6,88 см
АН=8*sin30=8*0,5=4 см
так как по условию АН=АD=4 cм, тогда АD=8 cм, а так как трапеция прямоугольная и ВН-высота, то DH=CB= 4 cм
площадь трапеции равна S= (a+b): 2 * h= (4+8):2*6.88=41,28 см2
Площадь трапеции равна 41,28 см2
Смотрите, что надо сделать, чтобы решение само по себе возникло:)))
Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС. Поэтому ответ 34 :)))