Трапеция АВСД, АД-диаметр, АО=ОД=радиус, АД=2ВС, АВ=2, трапеция равнобокая - только в равнобокую трапецию можно вписать окружность, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, треугольники АВН и КСД равны как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник ВС=НК=2х, АН=КС=(АД-НК)/2=(2ВС-ВС)/2=0,5ВС=х, НО=ОК=НК/2=2х/2=х, ОД=радиус=ОК+КД=х+х=2х=ОС, треугольник ОСК прямоугольный катет ОК=1/2 гипотенузы ОС, уголОСК=30, уголСОК=90-30=60, СК=ОС*sin60=2х*корень3/2=х/корень3, СД в квадрате=СК в квадрате+КД в квадрате=3*х в квадрате + х в квадрате=4х в квадрате, СД=2х=2 см, х=1, радиус=2*1=2
треугольник АВС
АВ = ВС = АС
(О;r) - вписанная
Найти: угол АОС, угол АОВ, угол ВОС
Решение:
1. Так как треугольник АВС - равносторонний, то равные углы АВС, ВСА и САВ будут равны 60°
Теперь вспомним, что центр вписанной окружности - это точка пересечения биссектрис. Тогда:
2. угол АВО = угол ОВС = уголАВС / 2 = 60 / 2 = 30°
3. угол ВСО = угол ОСА = угол АВО = угол ОВС = угол САО = угол ОАВ = 30° (все эти углы образованы из биссектрис одинаковых углов)
4. угол ВСО + угол СВО + угол ВОС = 180°
угол ВОС = 180 - 30 - 30 = 120°
5. угол ВОС = угол СОА = угол АОВ = 120° (их треугольники равны по 2 признаку: два равных угла и равные стороны равностороннего треугольника)
ответ: угол ВОС = 120°, угол СОА = 120°, угол АОВ = 120°.