1. Равнобедренный треугольник описан около прямоугольника с основанием a и высотой h. Основание треугольника совпадает с основанием прямоугольника. При каких размерах треугольника его площадь будет наименьшей? 2. Тело движется из точки А в точку С по ломанной АВС. Скорость движения в области I равна , в области II равна . Найти значение X, при котором время затраченное на весь путь будет наименьшим. Величину Х найти с точностью до 0.01 L. V1=1, V2=2, L1=30, L2=20, Н=15.
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Вариант 1, при АВ>BC. а) В ∆ АВС отрезок EF - средняя линия, так как соединяет середины сторон АВ и АС. ЕF параллельна ВС. Отрезок MD - секущая. Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC. По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC. ∠MNC=∠FND (вертикальные). Отсюда ∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
б) В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине: То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2. FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2. Но FN = FD (доказано выше) и ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE. Треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
Для второго варианта, при АВ<ВС: а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND. FN=FD. Что и требовалось доказать.
б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2. FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2. Но FN = FD (доказано выше) и ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE. То есть треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.