В условии просят найти расстояние от точки А до прямой ВС, а не к отрезку ВС! Это очень важно различать. Прямая на плоскости бесконечна, она не имеет длины, отрезок - часть прямой, она имеет длину. Так что сразу через точки В и С проведём прямую. Расстояние от точки до прямой - это длина перпендикуляра, проведённого из этой точки к этой прямой. Проведём к прямой ВС из точки А отрезок АН так, чтобы он пересекал прямую ВС под прямы углом. Это и есть расстояние, которое нужно найти. Оно занимает 4 клетки. Поэтому, в ответ пойдёт это число.
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
ответ: 4.