Докажите, что плоскость, проведённая через вершины А, D1 и С куба ABCDA1B1C1D1 параллельна плоскости, проведенной через вершины A1, B и C1
* * *
Диагонали противоположных граней куба, принадлеажщие одной плоскости, параллельны.
АС и А1С1 принадлежат плоскости диагонального сечения куба, А1В||D1C. Параллельны и ВС1 и АD1, принадлежащие плоскости ВС1D1А.
Если две пересекающиеся прямые (АС и АD1) одной плоскости параллельны двум пересекающимся прямым (A1C1 иBC1) (другой плоскости, эти плоскости параллельны.
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Докажите, что плоскость, проведённая через вершины А, D1 и С куба ABCDA1B1C1D1 параллельна плоскости, проведенной через вершины A1, B и C1
* * *
Диагонали противоположных граней куба, принадлеажщие одной плоскости, параллельны.
АС и А1С1 принадлежат плоскости диагонального сечения куба, А1В||D1C. Параллельны и ВС1 и АD1, принадлежащие плоскости ВС1D1А.
Если две пересекающиеся прямые (АС и АD1) одной плоскости параллельны двум пересекающимся прямым (A1C1 иBC1) (другой плоскости, эти плоскости параллельны.