6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
Диагональное сечение пирамиды- равнобедренный треугольник, углы при основании которого 45° по условию, значит, угол при вершине 180°-2*45°=90°, высота, проведенная к основанию в этом треугольнике равна половине основания, а площадь равна половине основания на высоту, значит, квадрат высоты равен 9 см², высота 3 см, она же и высота пирамиды, теперь легко вычислить объем пирамиды по формуле v=(1/3)*s*h, где s- площадь основания, т.е. квадрата, она равна половине произведения диагоналей, т.е. (2*3)²/2; h-высота, равная 3 см, объем равен
(1/3)*36*3/2=18/см²/