1) Все диаметры окружности равны между собой – верно. Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно. В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.
Так как PS=RS, то треугольник PSR с основанием PR боковыми сторонами PS и RS является равнобедренным. Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180° Подставляем в выражение известные нам значения: (1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180° Упрощаем: 4 * ∠PSR= 180° ∠PSR = 45° Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR ∠SPR = ∠SRP= 1,5 * 45°=67,5° Делаем проверку, того что все углы в треугольнике в сумме дают 180° 67,5° + 67,5° + 45°=180° Всё верно. ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно.
В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.