Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.
Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
1. всі чотири сторони квадрата мають однакову довжину, тобто вони рівні: ab = bc = cd = ad 2. протилежні сторони квадрата паралельні: ab||cd, bc||ad 3. всі чотири кути квадрата прямі: ∠abc = ∠bcd = ∠cda = ∠dab = 90° 4. сума кутів квадрата дорівнює 360 градусів: ∠abc + ∠bcd + ∠cda + ∠dab = 360° 5. діагоналі квадрата мають однакової довжини: ac = bd 6. кожна діагональ квадрата ділить квадрат на дві однакові симетричні фігури 7. діагоналі квадрата перетинаються під прямим кутом, і розділяють одна одну навпіл: ac┴bd ao = bo = co = do = d 2 8. точка перетину діагоналей називається центром квадрату і також є центром вписаного та описаного кола 9. кожна діагональ ділить кут квадрату навпіл, тобто вони є бісектрисами кутів квадрату: δabc = δadc = δbad = δbcd ∠acb = ∠acd = ∠bdc = ∠bda = ∠cab = ∠cad = ∠dbc = ∠dba = 45° 10. обидві діагоналі розділяють квадрат на чотири рівні трикутника, до того ж ці трикутники одночасно і рівнобедрені, і прямокутні: δaob = δboc = δcod = δdoa
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.