Нехай сторони трикутника а, в с.
а=в=7 см, с=11 см.
Р=а+в+с=7+7+11=25 см
Відповідь: 25 см.
(-2,2; -0,6)
Объяснение:
Пусть точка P(x₀, y₀) удовлетворяет системе уравнений. Возьмём квадратный корень из левой и правой части каждого уравнения:
Первое уравнение задаёт расстояние от точки P(x₀, y₀) до точки A(-4, -3), равное трём. Второе уравнение задаёт расстояние от точки P(x₀, y₀) до точки B(-1, 1), равное двум.
Заметим, что расстояние между точками A(-4, -3) и B(-1, 1) равно . Расстояние между данными точками равно сумме расстояний между точками P(x₀, y₀) и A(-4, -3) и между точками P(x₀, y₀) и B(-1, 1) (AB (5) = AP (3) + PB (2)). Значит, точка P(x₀, y₀) находится на отрезке между точками A(-4, -3) и B(-1, 1) и делит его в отношении 3 : 2, считая от точки A(-4, -3). Тогда справедливо
Поскольку точка A находится не в начале координат, выполнив параллельный перенос на вектор , мы получим координаты точки P(x₀, y₀):
.
Решением системы является точка (-2,2; -0,6).
Дано:
Треугольник ABC, угол C = 90°, угол A = 60°, биссектриса AD = 8 см.
Найти:
CB = ?
1. Угол CAD = Угол BAD = 60/2 = 30°.
2. Треугольник ACD: угол C = 90°, угол A = 30°, AD = 8 см., CD = 4 см. (т.к. в прямоугольном треугольнике, катет, лежащий напротив угла в 30° равен половине гипотенузе).
3. Треугольник ABC: угол C = 90°, угол A = 60°, угол B = 90° - 60° = 30°.
4. Треугольник ABD: угол DAB = ABD = 30°, следовательно треугольник ABD - равнобедренный, следовательно AD = DB = 8 см.
5. CB = CD + DB, CB = 4 + 8 = 12 см.
12 см.
ответ: 25 см.
Объяснение:
АВС - треугольник. Основание АС=11 см. АВ=ВС=7 см.
Р(АВС)=АВ+ВС+АС=2АВ+АС=2*7+11=14+11=25 см.