30=2*3*5 - произвеление взаимно простых чисел. Значит, достаточно доказать, что делится на 2, на 3, на 5
1) деление на 2
6п⁵+40п³ естественно, четное, т.е. делится на 2
15п⁴-п=п(15п³-1) если п - четное, то произведение делится на 2, если п нечетное, то в скобках получается четное число, т.е. опять произведение делится на 2.
2) деление на 3
6п⁵+15п⁴=3(2п⁵+5п⁴) - естественно , делится на 3
40п³-п=39п³+п³-п первое слагаемое делится на 3, провероим остальное . п³-п=п*(п²-1)=(п-1)*п*(п+1) имеем произведение последовательных чисел, одно из которыз ОБЯЗАТЕЛЬНО кратно 3.
3) 15п⁴+40п² естественно делится на 5
проверим 6п⁵-п
6п⁵-п=5п⁵+п⁵-п
5п⁵ делится на 5, проверим п⁵-п
п⁵-п=п*(п⁴-1)=п(п²-1)(п²+1)=п(п-1)(п+1)(п²+1)=п(п-1)(п+1)(п²-4+5)=
=п(п-1)(п+1)(п²-4)+5п(п-1)(п+1) второе слагаемое делится на 5, проверим первое
п(п-1)(п+1)(п²-4)=п(п-1)(п+1)(п-2)(п+2)=(п-2)(п-1)п(п+1)(п+2) имеем произведение последовательных 5 чисел, из которых одно обязательно делится на 5
Все.
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
< С=30 градусов.
tg C=АВ/АС
корень из 3 /3=АВ /9
АВ=3 корня из 3.