ABCD - выпуклый четырехугольник, в нем по условию ∠BAC=∠ACD, а это внутренние накрест лежащие при прямых СD и АВ, и секущей АС, значит, по признаку параллельности прямых СD и АВ параллельны. ВC=AD.
Четырехугольник окажется вписанным, если сумма противоположных углов равна 180°. Параллелограмм, который вписан в окружность, может быть только прямоугольником. /как частный случай прямоугольника - квадрат./
А если стороны АD и ВС не параллельны, то это будет равнобедренная трапеция.
Равнобедренной трапецией этот четырехугольник будет,
если добавить условия
1) AB≠CD; /верхнее и нижнее основания у трапеции различные./ и
6)BC не параллелен AD;/боковые стороны не параллельны/, 7) ∠BCA≠∠CAD; /при равенстве этих углов противолежащие углы равны, в сумме 180°, тогда трапеция не получим./
Если же добавить условие 8)∠ABC=90∘ то и угол С станет тоже прямым, поскольку ВС будет перпендикулярно к одной из двух параллельных прямых АВ, он окажется перпендикуляром и к СD, 3)AD>AB; значит, четырехугольник окажется прямоугольником. около него тоже можно описать окружность, центр ее - точка пересечения
диагоналей. если не учитывать 3)AD>AB, то можем допустить, что эти смежные стороны равны, тогда из прямоугольника получим квадрат.
наконец, окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. Но данных в условии не хватает для этого.
ответ 1), 6), 7, или 8)
ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
g₀ / g₁ = 40 / 2.25
отсюда g₁ = 2.25g₀ / 40 = 22.5 / 40 = 0.6 м/с²