1)Дано: циліндр, АВСD- переріз, ВD-діагональ, R=АО=ОД=6 см, кут ВDА=60 градусів
Знайти: АВ, S abcd
з трикутника ВDА ( кут ВАD= 90 градусів)
tg60= AB/AD AD=AO+OD=12 см
AB=AD tg60
AB=12 * корінь з 3
Осьовим перерізом є прямокутник, отже
S=AB*AD
S=12коренів з 3 * 12=144 корінь з 3 (см2)
2)осьовим перерізом є прямокутник, а прямокутник, у якого діагоналі перпендикулярні - це квадрат, отже висота = 2R=10 см
3) з трикутника АВО ВО=R=5см, К-середина АВ, КО=4см,
з трикутника ВОК (кут ВКО = 90 градусів)
За т.Піфагора ВК= корінь квадратний 25-16= 3 см
АВ=2ВК=6 см
АС=h=8 cм
S= 8*6=48 (cм2)
4) АО=R=5см, KA і КВ - твірні, KA=13 cм , KO-?, Sakb-?
з трикутника КОА (кут КОА=90 градусів)
КО=корінь з 169-25=корінь з 144=12
S=АВ*КО/2 АВ=AO+OB=10
S=10*12/2=60 (см2)
Каноническое уравнение прямой прямой (x+8)/1=(y-5)/(-2)=z/3 переходим к параметрическим уравнениям этой прямой.
х = t - 8, y = -2t + 5, z = 3t и подставляем в уравнение плоскости.
t - 8 -2t + 5 + 3t + 1 = 0,
2t - 2 = 0, t = 2/2 = 1.
Отсюда получаем координаты точки Р пересечения заданных прямой и плоскости: х = 1 - 8 = -7, y = -2*1 + 5 = 3, z = 3*1 = 3.
Тогда уравнение прямой, проходящей через точку М (-1,1,1) и точку пересечения прямой (x+8)/1=(y-5)/(-2)=z/3 и плоскости x+y+z+1=0, имеет вид (x + 1)/(-6) = (y - 1)/2 = (z - 1)/2.