1 у них один угол напротив лежащий и две стороны одинаковые , всё они подобны по одному углу и двум сторонам
3 там не всё видно но я предпологаю что там ещё одни углы равны поэтому треугольники равны по стороне и двум углам т к снизу два угла равны одни из сторон равны и тот угл
4 одни из сторон равны и равны одни углы и т к это параллелограмм то у них противоположные углы равны поэтому эти треугольники равны по одной стороне и двум углам
11 там вообще легко даётся что две стороны равны осталось найти угл между ними и их можно найти 180градусов - те углы которые на плоскости и всё и треугольники равны по двум сторонам и углу между ними
Запишите уравнение плоскости, проходящей через точки M0(−4,7,1) и M1(−4,8,0) параллельно вектору e¯¯¯={1,9,−6}.
Вектор М0М1 лежит в искомой плоскости, поэтому нормальный вектор этой плоскости найдём как векторное произведение векторов М0М1 и е.
М0М1 = (-4-(-4); 8-7; 0-1) = (0; 1; -1).
Найдём векторное произведение по схеме Саррюса.
М0М1 x e = I j k| I j
0 1 -1| 0 1
1 9 -6 | 1 9 = -6i – 1j + 0k + 0j + 9i – 1k =
= 3i – 1j – 1k.
Найден нормальный вектор (3; -1; -1).
Теперь по точке M0(−4,7,1) и нормальному вектору (3; -1; -1) составляем уравнение искомой плоскости.
3(x + 4) – 1(y – 7) – 1(z – 1) = 0.
3x +12 – y + 7 – z + 1 = 0.
3x – y – z + 20 = 0.
ответ: 3x – y – z + 20 = 0.
< ЕДС = < КДС - по условию
ДЕ=ДК - по условию
ДС - общая
Следовательно , тр-к ЕДС равен тр-ку КДС по 2-му признаку равенства треугольников
Значит < ЕСД = < КСД =30 град
< ЕСК= < ЕСД+< УСД
< ЕСК=30+30
< ЕСК=60 град