1) Рассмотрим ΔАВС, вектор а лежит на стороне АВ, вектор b лежит на стороне АD . Разность векторов а-b=DВ ( вектор) Уточняю длина ( или модуль) вектора равна длине отрезка на котором он лежит. Значит нужно найти отрезок DВ и АВ=13,АD=19 .
2) Достроим ΔАВD до параллелограмма , тогда сумма векторов а+b=АВ+АD=( по правилу параллелограмма ) = вектору АС. Тогда |AC|=|a+b|=24. Значит длина отрезка АС=24. По свойству диагоналей параллелограмма АО=12( О-точка пересечения диагоналей).
3) По свойству диагоналей параллелограмма: "сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон " имеем: AC²+BD²=2(AB²+AD²)
1. Найти площадь полной поверхности правильной четырехугольной призмы, если сторона основания равна 4, диагональ призмы, равная 10, составляет с плоскостью основания угол в 30 градусов.
Высота призмы, как катет против угла 30 градусов, равна 10/2 = 5. S = 2So + Sбок = 2*4² + 4*4*5 = 32 + 80 = 112 кв.ед.
2. Найти боковое ребро L правильной четырехугольной пирамиды, если ее высота H равна 7, а сторона a основания 8 и площадь полной поверхности, если апофема A равна корень из 65.
L = √(A² + (a/2)²) = √(65 + 16) = √81 = 9.
3. Найти площадь S полной поверхности правильной усеченной треугольной пирамиды, если стороны оснований равны a₂ = 4 и a₁ =1, а боковое ребро L = 2.
Модуль вектора |a|= 13 ,|b| = 19,|a +b | = 24. Найдите | a-b |.
Объяснение:
1) Рассмотрим ΔАВС, вектор а лежит на стороне АВ, вектор b лежит на стороне АD . Разность векторов а-b=DВ ( вектор) Уточняю длина ( или модуль) вектора равна длине отрезка на котором он лежит. Значит нужно найти отрезок DВ и АВ=13,АD=19 .
2) Достроим ΔАВD до параллелограмма , тогда сумма векторов а+b=АВ+АD=( по правилу параллелограмма ) = вектору АС. Тогда |AC|=|a+b|=24. Значит длина отрезка АС=24. По свойству диагоналей параллелограмма АО=12( О-точка пересечения диагоналей).
3) По свойству диагоналей параллелограмма: "сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон " имеем: AC²+BD²=2(AB²+AD²)
24²+BD²=2(13²+19²), BD=√(2*(169+361)-576)=√484=22.