М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anosovadara
anosovadara
30.06.2020 00:46 •  Геометрия

Решите , ! отрезок длиной 50 см опирается на две взаимно перпендикулярные плоскости. расстояния от концов отрезка до плоскости равны 30 см и 32 см. найдите проекцию отрезков на каждую из плоскостей

👇
Открыть все ответы
Ответ:
alenaizmailova
alenaizmailova
30.06.2020

Объяснение:

Дан правильный тетраэдр EPGS, у которого EF = 12.

Точки L и N лежат на ребрах SG и SE соответственно, причем SL = 3, SN = 3. Точка Т - середина ребра SF.

Найдите:

а) точку Y1 пересечения прямой TL и плоскости EFG;

б) точку Y2 пересечения прямой TN и плоскости EFG;

в) длину отрезка Y1Y2;

г) точку пересечения прямой TN и плоскости ELF;

д) прямую пересечения плоскостей LY1Y2 и NFE;

е) отношение, в котором плоскость LY1Y2 делит отрезок SE, считая от точки S.

Определение: Тетраэдр называется правильным, если все его грани - равносторонние треугольники.

а) точка Y1 должна лежать на линии  пересечения плоскостей GSF и EFG, так как прямая TL лежит в плоскости GSF. Для ее нахождения продлим прямую TL за точку Т до пересечения с продолжением прямой GE (линии пересечения плоскостей GSF и EFG.

б) точка Y2 должна лежать на линии  пересечения плоскостей ЕSF и EFG, так как прямая TN лежит в плоскости ESF. Для ее нахождения продлим прямую TN за точку Т до пересечения с продолжением прямой EF (линии пересечения плоскостей ESF и EFG.

в)  Проведем в грани GSF прямую LH параллельно ребру SF.  Треугольник GLH подобен треугольнику GSF, следовательно он правильный и LH = GL = 9 ед. Треугольники LHY1 и TFY1 также подобны с коэффициентом подобия k = TF/LH = 6/9 = 2/3. Тогда FY1/HY1 = 2/3 => FY1/(FY1+HF) = 2/3.  HF = 3 (HF=SL, так как LH║SF)  =>  FY1 = 6 ед.

Аналогично и для грани ESF => FY2 = 6 ед.

Треугольник Y1FY2 равнобедренный с углом при вершине F равным 60° (он вертикальный с углом EFG правильного треугольника EFG). Следовательно, это правильный треугольник и его сторона

Y1Y2 = Y1F = Y2F = 6 ед.

г) точка пересечения прямой TN и плоскости ELF - это точка Y2, так как плоскости ELF и ESF пересекаются по прямой EF, следовательно, прямая TN, лежащая в плоскости ESF, пересечет плоскость ELF в точке Y2 на линии пересечения этих плоскостей.

д) прямая пересечения плоскостей LY1Y2 и NFE - это прямая TY2 (NY2), так как точки Т и Y2 принадлежaт плоскости NFE (SEF) и плоскости LY1Y2.

е) точка N принадлежит плоскости LY1Y2, так как эта плоскость определяется как единственная пересекающимися прямыми LY1 и NY2.  SN = 3, а SE = 12(дано), значит NE = 12 -3 =9). Следовательно, плоскость LY1Y2 делит отрезок SE в отношении SN/NE = 1:3, считая от точки S.

P.S. Пункт в) можно решить по теореме Менелая.

Для треугольника GSF и секущей LY1 имеем:

(GL/LS)*(ST/TF)*(FY1/Y1G) = 1. Подставим известные значения:

(9/3)*(6/6)*(FY1/Y1G) = 1  => FY1/Y1G = 1/3. Или

FY1/(12+FY1) = 1/3. => FY1 = 6 ед.

Аналогично для треугольника ESF и секущей NY2 получаем

FY2 = 6 ед.


Дан правильный тетраэдр efgs, у которого ef = = 12. точки l и n лежат на ребрах sg и se соответствен
4,4(33 оценок)
Ответ:
Любаша5648
Любаша5648
30.06.2020

Понятно, зачем нам сказано, что биссектрисы пересекаются в одной точке - ведь эта точка равноудалена от . сторон четырехугольника и поэтому является центром вписанной окружности. А раз в четырехугольник можно вписать окружность, суммы противоположных сторон равны. Таким образом, ME+BD=MD+BE. Это равенство позволяет найти третью сторону треугольника, используя связь между сторонами и медианами треугольника, а также тот факт, что медианы в точке пересечения делятся в отношении 2:1, считая от вершины.

Пусть AB=c, BC=a, CA=b, тогда

CE^2=\frac{a^2}{2}+\frac{b^2}{2}-\frac{c^2}{4};\ AD^2=\frac{b^2}{2}+\frac{c^2}{2}-\frac{a^2}{4} . Поэтому

\frac{1}{3}\sqrt{\frac{a^2}{2}+\frac{b^2}{2}-\frac{c^2}{4}}+\frac{a}{2}=\frac{1}{3}\sqrt{\frac{b^2}{2}+\frac{c^2}{2}-\frac{a^2}{4}}+\frac{c}{2}, а умножив для упрощения это равенство на 6 и подставив b=12 и c=10, получаем

\sqrt{188+2a^2}+3a=\sqrt{488-a^2}+30.

При всей моей любви к иррациональным уравнениям, решать это уравнение не хочется. Давайте попробуем угадать решение. И если Вы достаточно настойчивы, то удача в этой задаче к Вам придет - подходит a=10. (\sqrt{388}+30=\sqrt{388}+30). Другого решения быть не может, поскольку при a>0 правая часть возрастает, а левая убывает.

Таким образом, мы доказали, что наш треугольник равнобедренный со сторонами 12, 10 и 10. Иными словами, он состоит из двух прямоугольных треугольников с гипотенузой 10 и катетом 6, то есть треугольников, подобных египетскому 3-4-5. Площадь египетского треугольника равна 6, подобного треугольника с коэффициентом подобия 2 равна 24, а поскольку их два, суммарная площадь равна 48.

И наконец, кто не знает формулу для длины медианы, можно воспользоваться или теоремой косинусов, или теоремой Стюарта, или теоремой о сумме длин диагоналей параллелограмма.

4,7(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ